Floquet Theory
ثبت نشده
چکیده
Lemma 8.4 If C is a n n × matrix with 0 det ≠ C , then, there exists a n n × (complex) matrix B such that C e = . Proof: For any matrix C , there exists an invertible matrix P , s.t. 1 P CP J − = , where J is a Jordan matrix. If C e = , then, 1 1 1 P B P B e P e P P CP J − − − = = = . Therefore, it is suffice to prove the result when C is in a canonical form. Suppose that 1 ( , , ) s C diag C C = , j j j j C I N λ = + , where j N is nilpotent, that is, 0 1 0 0 0 1 0 0 0 j N =
منابع مشابه
Dynamic Instability Analysis of Embedded Multi-walled Carbon Nanotubes under Combined Static and Periodic Axial Loads using Floquet–Lyapunov Theory
The dynamic instability of single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT) and triple-walled carbon nanotubes (TWCNT) embedded in an elastic medium under combined static and periodic axial loads are investigated using Floquet–Lyapunov theory. An elastic multiple-beam model is utilized where the nested slender nanotubes are coupled with each other through the van d...
متن کاملPeriodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملDynamic Stability Analysis of a Beam Excited by a Sequence of Moving Mass Particles
In this paper, the dynamic stability analysis of a simply supported beam carrying a sequence of moving masses is investigated. Many applications such as motion of vehicles or trains on bridges, cranes transporting loads along their span, fluid transfer pipe systems and the barrel of different weapons can be represented as a flexible beam carrying moving masses. The periodical traverse of masses...
متن کاملFloquet Theory and Stability of Nonlinear Integro-differential Equations
One of the classical topics in the qualitative theory of differential equations is the Floquet theory. It provides a means to represent solutions and helps in particular for stability analysis. In this paper first we shall study Floquet theory for integro-differential equations (IDE), and then employ it to address stability problems for linear and nonlinear equations.
متن کاملA Unified Floquet Theory for Discrete, Continuous, and Hybrid Periodic Linear Systems
In this paper, we study periodic linear systems on periodic time scales which include not only discrete and continuous dynamical systems but also systems with a mixture of discrete and continuous parts (e.g. hybrid dynamical systems). We develop a comprehensive Floquet theory including Lyapunov transformations and their various stability preserving properties, a unified Floquet theorem which es...
متن کاملFloquet formulation for the investigation of multiphoton quantum interference in a superconducting qubit driven by a strong ac field
We present a Floquet treatment of multiphoton quantum interference in a strongly driven superconducting flux qubit. The periodically time-dependent Schrödinger equation can be reduced to an equivalent timeindependent infinite-dimensional Floquet matrix eigenvalue problem. For resonant or nearly resonant multiphoton transitions, we extend the generalized Van Vleck GVV nearly degenerate high-orde...
متن کامل